
Segwit in Bitcoin:
Lessons Learned

Gregory Sanders



Myself
● Elements Project

○ Elements Alpha
○ Liquid

● Did review for Segwit in Core
○ Upstream review important for downstream

● Scaling(?)
○ How do we scale protocol development?

https://elementsproject.org/
https://elementsproject.org/
https://github.com/ElementsProject/elements
https://github.com/ElementsProject/elements
https://blockstream.com/2015/10/12/introducing-liquid.html
https://blockstream.com/2015/10/12/introducing-liquid.html


Segwit as a Solution
● First developed as an “element” of Elements Alpha
● Solves the problem of unintentional malleability.

○ TL;DR Allows safe chaining of pre-signed transactions for smart contracting in Bitcoin.
○ Payment Channels, Lightning

● But doesn’t fit into Bitcoin really.
○ We can’t just change txid formulation on a whim
○ No matter the technical benefits, hard to imagine non-security-fix HF

https://github.com/ElementsProject/elements


Segwit as Deployed
● Key insight: If you can deploy a type of “extension block”. Inside this 

extension nearly any rules can be enforced, turning hard forks into soft forks
● Many ideas like Confidential Transactions as Softfork
● Segwit, a highly desired extension, fits the bill

○ Special new transaction types are signaled via empty scriptSig and commitment to the 
witnessScript in scriptPubkey

○ Think P2SH, but hiding the new data inside the extension block
○ Now signatures are out of txid calculation for both new and old nodes.
○ Backwards compatible

● Old news now 

https://bitcoincore.org/en/2016/06/24/segwit-next-steps/
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/


Isn’t Segwit already done?
● Segwit is active in testnet, and close to release in mainnet
● One of the largest changes to Bitcoin ever

○ Touched nearly every part of the codebase: serialization, p2p, wallet, consensus

● Talking about this has two purposes:
○ Informational for those not privy to the sausage-making
○ What I see as takeaways from the exercise

● Any opinions are just mine



Minimum Viable Product (What didn’t make it)
● New address format(BIP142)

○ Hesitancy to perpetuate base58+checksum
○ Nested P2SH for now

● Additional tweaks to commitment structure
○ Arbitrary segwit commitment tree and fast hashing
○ Previous block witness commitment

● Validation Cost Metric
● Fraud Proofs
● New scripting*

* for the most part

https://github.com/bitcoin/bips/blob/master/bip-0142.mediawiki
https://github.com/sipa/bitcoin/pull/75
https://github.com/sipa/bitcoin/pull/75
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012103.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012103.html
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/3_tweaking_the_chain_3_nick.pdf
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/3_tweaking_the_chain_3_nick.pdf


Minimum Viable Product
● Each proposal needs a champion
● Each proposal increases demand for review

○ Already strapped for review as-is

● Even “too many BIP numbers” can be a problem
○ Downstream developers can’t figure out why signatures are failing (BIP143)
○ People still expecting BIP142 addresses



Sidenote: Scripting differences / similarities
● CHECKMULTISIG still requires an additional dummy argument in the stack

○ Null dummy softfork: #8636

● Sighash serialization overhaul (BIP143)
○ O(n) hashing
○ Value under hash!

● “Minimal if” as policy: #8526
● No uncompressed pubkeys as policy #8499 (?)
● Nullfail as policy #8634
● Fixes SIGHASH_SINGLE “one” bug
● Low_s softfork
● Script versioning

https://github.com/bitcoin/bitcoin/pull/8636
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bitcoin/pull/8526
https://github.com/bitcoin/bitcoin/pull/8499
https://github.com/bitcoin/bitcoin/pull/8634
https://github.com/bitcoin/bitcoin/blob/master/src/script/interpreter.cpp#L1216
https://github.com/bitcoin/bitcoin/pull/8533#issuecomment-243973512
https://github.com/bitcoin/bitcoin/pull/8533#issuecomment-243973512


Segwit Developed
● #segwit-dev (still ~52 users there, for some reason)
● Contention about where it should be discussed

○ Mailing list used to announce BIPs, major changes
○ Hesitancy to flood #bitcoin(-core)-dev
○ Further partitioning of IRC development presence

● Bulk of design done pre-PR
● 4 segnet iterations, starting with segnet1 in Dec. 2015

○ Were actively used by downstream developers
○ Spam 4MB blocks



Segwit PR’d
● 32 participants
● April 9th to June 24th
● The branch where comments were targeted
● ~1,486 lines of code for implementation
● ~3,338 lines of code for tests



Segwit Rebased
● Identical diff
● June 6 to June 26
● 0.13, Compact Blocks, and Segwit

○ Contention on when each should be merged
○ 0.12 backport promises? 

● Merged, activated on testnet



Segwit merged to master. Done!



Backport Backlog
● Fix Segwit transaction blinding via reject filter

○ Spammers could temporarily stop a transaction from propagating

● Compact blocks for Segwit
○ Plus versioning negotiation

● Segwit wallet cleanups
● Softfork/policy follow-ons
● Slew of bugfixing backports

○ https://github.com/bitcoin/bitcoin/milestone/22

● Weeks of somewhat tedious irc dev meetings
● Getting close!

https://github.com/bitcoin/bitcoin/milestone/22
https://github.com/bitcoin/bitcoin/milestone/22


Proposal(s)
● Any non-trivial consensus change to Bitcoin in the future should have an 

actively-used testnet spun up.
○ If supposed downstream users aren’t actively testing, is the change even desired?
○ Regular (ab)use helps to surface issues early

● Ride-along changes should be discussed, implemented, and tested as early 
as possible into the development cycle.

○ Other issues will surely pop up

● Tests should take up a large fraction of the loc changes
● Any additional technical channels should be carefully spun up, logged, and 

spun down at appropriate times
○ Avoid loss of design history, communal knowledge



Proposal(s)
● If a PR spans a number of layers:

○ Keep commits in logical partitions
○ Split sections with empty commits marking start/end



Proposal(s)
● Stop talking about block size

○ Let’s talk about “weight” and “throughput”

● Only spend time backporting major consensus changes when there is 
demand

● Don’t do large changes like this often
○ Higher amount of risk compared to usual
○ Slows other technical debt cleanup (libconsensus, network refactor, etc)
○ Is more uninviting for review
○ Collides into regular release schedule, causes confusion/tension



Thanks!



Softforks with increased risks
● Segwit nodes must find sufficient number of upgraded nodes

○ You may be partitioned off the network if you can’t find peers to serve new data
○ Same with any “extension block” style softfork
○ P2SH et al. suffer no such risks

● Mitigations:
○ Preferential connections used to mitigate
○ Find more compatible peers faster

■ “feeler” connections

● Need a long lead-time to ensure safety
● Punish bad peer behavior without redoing all networking code

https://github.com/bitcoin/bitcoin/pull/8282
https://github.com/bitcoin/bitcoin/pull/8282

